3.6.14 \(\int \sqrt {d+c^2 d x^2} (a+b \sinh ^{-1}(c x))^n \, dx\) [514]

Optimal. Leaf size=235 \[ \frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {1+c^2 x^2}}+\frac {2^{-3-n} e^{-\frac {2 a}{b}} \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \left (-\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {1+c^2 x^2}}-\frac {2^{-3-n} e^{\frac {2 a}{b}} \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {1+c^2 x^2}} \]

[Out]

1/2*(a+b*arcsinh(c*x))^(1+n)*(c^2*d*x^2+d)^(1/2)/b/c/(1+n)/(c^2*x^2+1)^(1/2)+2^(-3-n)*(a+b*arcsinh(c*x))^n*GAM
MA(1+n,-2*(a+b*arcsinh(c*x))/b)*(c^2*d*x^2+d)^(1/2)/c/exp(2*a/b)/(((-a-b*arcsinh(c*x))/b)^n)/(c^2*x^2+1)^(1/2)
-2^(-3-n)*exp(2*a/b)*(a+b*arcsinh(c*x))^n*GAMMA(1+n,2*(a+b*arcsinh(c*x))/b)*(c^2*d*x^2+d)^(1/2)/c/(((a+b*arcsi
nh(c*x))/b)^n)/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 235, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {5791, 3393, 3388, 2212} \begin {gather*} \frac {2^{-n-3} e^{-\frac {2 a}{b}} \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^n \left (-\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c^2 x^2+1}}-\frac {2^{-n-3} e^{\frac {2 a}{b}} \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^n \left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c^2 x^2+1}}+\frac {\sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^{n+1}}{2 b c (n+1) \sqrt {c^2 x^2+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^n,x]

[Out]

(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^(1 + n))/(2*b*c*(1 + n)*Sqrt[1 + c^2*x^2]) + (2^(-3 - n)*Sqrt[d + c^
2*d*x^2]*(a + b*ArcSinh[c*x])^n*Gamma[1 + n, (-2*(a + b*ArcSinh[c*x]))/b])/(c*E^((2*a)/b)*Sqrt[1 + c^2*x^2]*(-
((a + b*ArcSinh[c*x])/b))^n) - (2^(-3 - n)*E^((2*a)/b)*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^n*Gamma[1 + n,
 (2*(a + b*ArcSinh[c*x]))/b])/(c*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])/b)^n)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5791

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c))*Simp[(d
 + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Cosh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSinh[c*x]], x] /; Free
Q[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p, 0]

Rubi steps

\begin {align*} \int \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \, dx &=\frac {\sqrt {d+c^2 d x^2} \int \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \, dx}{\sqrt {1+c^2 x^2}}\\ &=\frac {\sqrt {d+c^2 d x^2} \text {Subst}\left (\int (a+b x)^n \cosh ^2(x) \, dx,x,\sinh ^{-1}(c x)\right )}{c \sqrt {1+c^2 x^2}}\\ &=\frac {\sqrt {d+c^2 d x^2} \text {Subst}\left (\int \left (\frac {1}{2} (a+b x)^n+\frac {1}{2} (a+b x)^n \cosh (2 x)\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c \sqrt {1+c^2 x^2}}\\ &=\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {1+c^2 x^2}}+\frac {\sqrt {d+c^2 d x^2} \text {Subst}\left (\int (a+b x)^n \cosh (2 x) \, dx,x,\sinh ^{-1}(c x)\right )}{2 c \sqrt {1+c^2 x^2}}\\ &=\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {1+c^2 x^2}}+\frac {\sqrt {d+c^2 d x^2} \text {Subst}\left (\int e^{-2 x} (a+b x)^n \, dx,x,\sinh ^{-1}(c x)\right )}{4 c \sqrt {1+c^2 x^2}}+\frac {\sqrt {d+c^2 d x^2} \text {Subst}\left (\int e^{2 x} (a+b x)^n \, dx,x,\sinh ^{-1}(c x)\right )}{4 c \sqrt {1+c^2 x^2}}\\ &=\frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {1+c^2 x^2}}+\frac {2^{-3-n} e^{-\frac {2 a}{b}} \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \left (-\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {1+c^2 x^2}}-\frac {2^{-3-n} e^{\frac {2 a}{b}} \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.43, size = 160, normalized size = 0.68 \begin {gather*} \frac {d \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^n \left (\frac {4 a+4 b \sinh ^{-1}(c x)}{b+b n}+2^{-n} e^{-\frac {2 a}{b}} \left (-\frac {a+b \sinh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-2^{-n} e^{\frac {2 a}{b}} \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )^{-n} \Gamma \left (1+n,\frac {2 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )\right )}{8 c \sqrt {d \left (1+c^2 x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^n,x]

[Out]

(d*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^n*((4*a + 4*b*ArcSinh[c*x])/(b + b*n) + Gamma[1 + n, (-2*(a + b*ArcS
inh[c*x]))/b]/(2^n*E^((2*a)/b)*(-((a + b*ArcSinh[c*x])/b))^n) - (E^((2*a)/b)*Gamma[1 + n, (2*(a + b*ArcSinh[c*
x]))/b])/(2^n*(a/b + ArcSinh[c*x])^n)))/(8*c*Sqrt[d*(1 + c^2*x^2)])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \left (a +b \arcsinh \left (c x \right )\right )^{n} \sqrt {c^{2} d \,x^{2}+d}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^n*(c^2*d*x^2+d)^(1/2),x)

[Out]

int((a+b*arcsinh(c*x))^n*(c^2*d*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^n*(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)^n, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^n*(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)^n, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{n}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**n*(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x))**n, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^n*(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^n\,\sqrt {d\,c^2\,x^2+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))^n*(d + c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*asinh(c*x))^n*(d + c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________